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Scattering by a Lossy Dielectric Cylinder
in a Rectangular Waveguide

ROLAND GESCHE, MEMBER, IEEE, AND NORBERT LOCHEL

Abstract —Electromagnetic fields in a rectangular waveguide containing
a lossy dielectric cylinder are investigated by means of the orthogonal
expansion method. The calculated results are proved by measurement.
Resonance effects become visible by frequency responses of the scattering
parameters and understandable by patterns of magnetic fields and Poynt-
ing vectors. The lowest resonance is nonsymmetric and can be used to
realize tunable bandstop filters with a relative 3-dB bandwidth of about
0.04 and an attenuation of more than 40 dB.

1. INTRODUCTION

YLINDRICAL OBSTACLES in a rectangular wave-
guide are used in many microwave devices. Since
high-permittivity dielectric materials with low losses and
eligible temperature coefficients are available, filter struc-
tures become important applications of dielectric obstacles
in waveguide structures.
This paper investigates the structure of the dielectric
cylinder in a rectangular waveguide shown in Fig. 1 con-
sidering the following restrictions:

* Incident fields are of the TE,,, mode.

® The axis of the cylindrical obstacle is parallel to the
electric field vector.

 The dielectric is assumed to be isotropic, homoge-
neous, and linear, it may have losses.

* The obstacle extends over the entire waveguide height
and can be displaced from the waveguide center.

* The waveguide walls are ideal conductors.

Considerable effort has been made by many authors to
investigate the physical effects in such structures. To im-
prove the approximations given in [1]-[3], Nielsen applied
the point-matching method [4], [5], which has been mod-
ified in [6] and [7]. Multiple current sources are used to
describe scattering by dielectric and ferrimagnetic cylin-
ders [8]-{12], and some authors have investigated similar
problems [13]-[16]. Lauterjung [17] applied the orthogonal
expansion method, which was modified to analyze the
present structure [18]-[20].

The orthogonal expansion method yields very reliable
and accurate values for the scattering parameters. Further-
more, fields and Poynting vectors can be investigated. This
allows a physical interpretation of the occurring resonance
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Fig. 1. Rectangular waveguide with dielectric cylinder.
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Fig. 2. Gceometry of the investigated structure.

effects, which has not been done in those previous papers
using other methods [1]-[16]. With the method described
here, a better understanding of filters using dielectric rods
becomes possible. These advantages justify the analytical
and numerical effort of the orthogonal expansion method.

II. MATHEMATICAL FORMULATION

Fig. 2 shows the geometry of the investigated structure
and the location of the coordinate systems used. The
structure consists of two waveguide regions (W1, W2) and
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a cylindrical interaction region IR [21]-[23]. The fields of
the incident TE , mode and all scattered fields are inde-
pendent of the z coordinate. Therefore, it is sufficient to
consider the scattering problem with the three field com-
ponents E,, H_, and H,. These fields can be derived from
a vector potential [24]:

— —> 1

A=Azee H=vxA4 E=-
Jweg,

(vxH). (1)

The dielectric losses are considered by a complex permit-
tivity:

e=eq,(1— jtand) inside the dielectric cylinder
€0 = . A
@ e outside the dielecric cylinder.
2
A. Fields in the Interaction Region

First, the ficlds are regarded in the coordinates of the
dielectric cylinder pS, @5, z. Taking the revolution condi-
tion into account, the wave equation solution reads

S < e

s <r:
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The amplitudes of (3) and (4) are arranged in vectors:
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The continuity conditions on the cylinder surface pS=r
yield

i=t-a  a=na (7)
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n,= Jn(klr) , n=0,1,2,--- (10)

where the prime symbol denotes the derivative with respect
to argument. ‘

The fields in the coordinate system of the dielectric
cylinder (egs. (3) and (4)) will now be shifted to the
coordinate system of the interaction region p,9,z using
the transformation given in [25]. It is sufficient to for-
mulate the wave equation solution in the interaction region
outside the region of the dielectric cylinder:
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Amplitudes are again arranged in vectors:

bl by
b by’
b b
=1 : pr=| 1 | (12)
bie B
bl b
|1 Lo

The coordinate transformation in [25] yields relations
between the amplitude vectors (6) and (12):
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To perform the orthogonal expansion method, it is
suitable to condense the. p-dependent terms of (11) to new
functions U,(kp), U;(kp), and U, (kp):

sin( po)

(kp)‘/—— + i‘. {U;(kp) Jr

© Uy 29)

—ﬁ;—} (16)

A, is proportional to the tangential electric field compo-
nent on the interaction region surface E,. To consider the

=G"a" bp'=G’a¥ (13) tangential magnetic field component H,, the following
r . function is defined introducing [I,(kp), I’(kp), and
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The Bessel functions from (11) are arranged in matrices:
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| Jo(ke) |
Ji(kp) 0
J(kp)
J(kp) =
Jl(kp)
0 J,(kp)
_Yo(kp) |
Yi(kp) 0
Y, (kp)
Y(kp) = (19)
Yl(kp)
0 Yz(kp)

By means of (11), the vectors (18) of (16) and (17) read

(20)
(21)

The vectors b’ and b” are replaced using the transforma-
tion (13). Then a” is replaced using (7). Finally, @’ is
eliminated. A relation between U(kp) and I(kp) follows,
which can be written by the matrix Z(kp):

U(kp) = J(kp) B+ Y(kp)-B¥

I{kp) == hk{ J'(kp)-b"+Y'(kp)-b"}.

Ulkp) = Z(ko)-I{kp) (22)

Z(kp) =5 J(kp)-G"+Y(kp)-G”-£)}

{J(ko)-G'+Y'(kp) -G£} . (23)

For the following development of the continuity condi-
tions on the surface of the interaction region (p = R) by
the orthogonal expansion method, the field formulations
(16) and (17) are used. The continuity conditions on the
surface of the dielectric cylinder are ‘considered by the
matrix Z(kp) from (22).

B. Scattering Parameters

In the waveguide regions W1 and W2, all TE,,, modes
are to be considered. In the Cartesian coordinate system
x,y, z of Fig. 2, these are modes with the field components
H,, H, and E, which are propagating in the + x direc-
tion.

Waveguide region W1 (— oo < x <0):

{ g5 m* + 1, e ksm b4

Waveguide region W2 (0 < x <o0).

o0
.= ) sin

m=1

5 mar \?
kxm: weOHO_(T) .

For a correct field matching in the whole interaction
region, the fields (24) and (25) must be defined for x <0
and x > 0, respectively. For x < — r and x > r, the validity
of (24) and (25) is obvious. In the region —r < x < r the
fields of the interaction region of (16) and (17) can be
continued analytically. Only at x =0, a pole will occur
because of the Y functions. Therefore it is sufficient to
exclude only the plane x = 0 from the definition regions of
(24) and (25). A former discussion about the validity of
field representtions for a related problem is given by
Lewin [26], {27]. In [6] and [7], the same regions as in our
method are used.

The eigenfunctions of the waveguide fields are abbrevi-
ated as follows:

may

=~
I

{tme—./kxmx 4 sme+fkrmx}

(25)

(26)

. mw
®i(x,y)=>0'(x, y)=sin g/ FumX

(27)

may e+Jkme

0, (x,y) =2, (x, y) =sin (28)

The transformation to the cylindrical coordinates of the
interaction region yields

ma(b+ psing)
—_—e¢

Q,Z(paw):@,’n(mqo)ﬂin h ~Jkmpcose
ma(b+psing)
8 (0.9) = 03 (p. ) = sin " LI i pn

(29)
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The p derivatives are also abbreviated:

Vi(p, ) =—%;pp’—wh
¥i(p.9)=- 220,
¥,.(p,9) =—3¢—'r13(5i)h
\P;(P,<P)="iq%:’ﬂh. (30)

The orthonormal eigenfunctions dependent on ¢ from
(16) and (17) are arranged in a vector:

1/V2
sing
sin2¢
: (31)
cos g
cos2¢

To obtain the continuity conditions on the surface of the
interaction region, (16) and (17) are multiplied with the
elements of T. Integration by ¢ in the range of —7/2 to
37/2 yields {17], [20], [23]

Continuity of E_:
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Continuity of H:
) [e0]
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7/2

3/27 -
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T,

| //2 2f(¢)\P,;(R,<p)d¢}. (33)

To obtain the integrals from (32), the integrands are ex-
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panded to Bessel functions [28], [29]:

ma(b+p-sing)
e
h

F jkempcos

T(¢)sin

i=

- ¥ f((p)sin(i<p+mTM)J,(\/(hkxm)2+(m77)2%)

1= -0

_ hk .,
e F jiarctan P k%m > 0
1,2
ma+y — k? (34)
= k2, <0,

m'rr-T-V—kim ’

After exchanging integration and summation, the g-depen-
dent terms can be integrated analytically. Derivation with
respect to p yields the terms of the sums which are used to
calculate the integrals from (13). Now the integrals are
arranged in matrices:

[ ¢, ] 1
9 &

U(kR) = KVE. 3'1 + KVA. 1.1 (35)
) t,
[ 4, | 1]
) "

I(kR) = K'E. s |HE | (36)
2 I,

Taking into account (22), the scattering matrix can be
obtained by (35) and (36):

4t q1
2 q;
o= S- S'l (37)
¢, 52

S={K"—Z(kR)-K"}'-{Z(kR)-K"® - K'%}.
(38)

C. Numerical Investigation

For numerical investigation, the infinite sums of the
exact mathematical formulation must be approximated by
finite sums. An examination of the scattering parameters
and field convergence yields criteria for the truncation of
the sums. For an accuracy of the TE, ;-mode scattering
coefficients (¢, and r;) better than 1 percent and not too
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Fig. 3. Comparison with Bhartia [12]. ¢, = 4.4; tand =2.955%X1072;

r=0.05625h; b=0.5h,0.6h,0.7h.

large post radius and permittivity (e,r/k <10), the follow-
ing numbers of eigenfunctions have to be considered:

interaction region: IR:n_, =p. . =10

waveguide regions: WI1: m , =10 W2: m g, =11.

(39)

The numbers of eigenfunctions in both waveguide regions
have to be different in order to obtain quadratic matrices
in (38). Their sum has to be equal to the number of
eigenfunctions in IR, 2p, . +1. With the wavenumbers
from (39), the computation of one scattering matrix needs
about 3.5 s on an IBM 4381 computer.

For accurate field patterns, higher order scattering coef-
ficients must be precisely computed, so more eigenfunc-
tions have to be considered:

interaction region: IR:n . =p . =25
Wl:m . =25 W2:m,, =26.

(40)

waveguide regions:

IIL

Numerical results are given for a R-100 waveguide with
the following width:

RESULTS

h=22.86 mm =9/10 in. (41)

The cutoff frequency of the TE,, mode is 6.56 GHz;
frequency respsonses are given in the technically used
range 8 GHz—-12 GHz. All dimensions are normalized with
respect to the waveguide width .

A. Comparison with Other Authors

Scattering parameters are compared with results from
[12] (Fig. 3) and [15] (Fig. 4). The reflection coefficients |r|
of a lossy dielectric rod calculated by Bhartia [12] agree
with our results within drawing precision except for the
symmetric case (b= 0.5h) near 12 GHz. Hsu and Auda
[15] show the transmission coefficient |z,| as a function of
the post position b/h. Below the minimum of |¢] at
b= 0.6h, there is a small discrepancy between the curves
which disappears above b = 0.64.
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Fig. 4. Comparison with Hsu {15]. f =937 GHz; ¢, =38; tand = 0;
r=0.075h.
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Fig. 5 Frequency responses of a bandstop filter. €, = 38.5; tan — 2 ¥

107%; r=10.034;, b=05h,0.6h, 0.7, 0.8h.

B. Bandstop Filter

To design bandstop filtes with suitable characteristics. a
dieletric material is chosen with a high permittivity (e, =
38.5), low losses (tand = 210~ *), and an eligible temper-
ature coefficient as described by Pébl and Wolfram [30].

Figs. 5 and 6 show the calculated and measured
frequency responses of the transmission coefficient ¢, for
several post positions ». Though a small cylinder radius is
chosen (r =10.03h), stopbands occur with a theoretical
attentuation greater than 40 dB. The measured attenuation
decreases from about 40 dB (0.64 < b <0.7h) to 15 dB
(b =0.925k). Moving the post from the waveguide center
to one side wall, the resonance frequency decreases (Fig. 5,
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Fig. 6. Frequency responses of a bandstop filter. €, =38.5; tand =2x
1074%; r=0.034; b= 0.85h,0.9%,0.925h.

Fig. 7. Magnetic field in a bandstop filter at resonance frequency.
f=10.52 GHz; wr=05m; |t,]=~50 dB; ¢, =385; tand =2x10"%;
r=10.03h; b=0.9h. :

0.52 < b < 0.8h) and increases again (Fig. 6, 0.85A < b <
0.925h). At the same time, the bandwidth decreases. So a
certain resonance frequency in the range from 10 GHz to
12 GHz can be achieved by two alternative post positions,
thereby obtaining different bandwidths.

The principal calculated effects are proved by measure-
ment. Divergences occur mainly at resonance effects. The
measured attenuation is smaller than the calculated value
because of waveguide and measurement device losses,

which are not considered in the analysis. (The equipment

used was not optimized to obtain low losses.) Furthermore,
measured resonance frequencies are higher than calculated
ones. Possible reasons are tolerances of the dielectric con-
stant and cylinder radius, which have a great influence on
resonance frequencies.

Magnetic fields at resonance are shown in Fig. 7. Be-
cause of the low transmission coefficient (|¢,] = —50 dB),
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Fig. 8. Poynting vector in a bandstop filter below and above resonance
frequency. €, = 38.5; tan8 = 2x107%; r = 0.03%; b= 0.9%.

there is no wave propagation in the waveguide region W2.
In W1, a standing wave occurs. Inside and near the post, a
concentric magnetic field occurs. The location of field
extrema is time-independent. At the chosen time (wt=
0.57), the field strengths are maximal; at wt = 0, all fields
vanish. Resonance occurs as an interaction between the
fields of the dielectric cylinder and the waveguide walls. In
the region of the post, fields are similar to those of the
TE,, mode of the empty waveguide. The resonance can be
explained by the occurrence of TE,,-type fields at cutoff
frequency in a dielectric loaded waveguide region. Note
that the resonance fields are asymmetric to the waveguide
and therefore cannot be obtained by the discussion of a
centered post.

Poynting vectors below and above resonance frequency
are shown in Fig. 8. In both diagrams, a vortex of power
flow occurs. Below resonance, the power is transported
through the rod in the propagation direction of the wave-
guide. At resonance, the rotation direction of the vortex
changes and the transmission becomes minimal. Above
resonance, the power is transported through the waveguide
in the lower region (0 < y <0.5h). The physical mecha-
nism of power flow changes at resonance. Below reso-
nance, the power distribution is caused by the TE,, mode.
Above resonance, the occurring TE,, mode changes the
power distribution.

IV. CONCLUSIONS

A method is presented which obtains accurate results
and field patterns for a lossy dielectric cylinder in a
rectangular waveguide. The lowest resonance mode in the
fundamental-mode frequency range is used to realize a
tunable bandstop filter. As shown by the field patterns, the
resonance is caused by an interaction between the dielec-
tric cylinder and the waveguide walls. For this resonance
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mode, posts are smaller than those used today in technical
applications.

To design higher order filters, post can be located in
series by simple scattering-matrix operations. For an effec-
tive design of multiple-post structures, knowledge of the
principal physical effects of the one-post structure shown
here is useful becaus of the variety of effects and possible
structures.

ACKNOWLEDGMENT

The authors would like to thank Prof. Dr.-Ing. G. Piefke
and the members of his staff for helpful discussions.

REFERENCES

{11 N. Marcuvitz, Waveguide Handbook. New York: McGraw-Hill,
1951. : )

[2] K. W. H. Foulds, “Simple calculation of the equivalent circuit of

loss-free obstacles,” Proc. IEEE, vol. 12, pp. 2180-2186, 1965.

1 L. Lewin, Theory of Waveguides. London: Butterworth, 1975.

4] E. D. Nielsen, “Scattering by a cylindrical post of complex permit-
tivity in a waveguide,” JEEE Trans. Microwave Theory Tech., vol.
MTT-17, pp. 148-153, 1969.

[5] J. B. Andersen and B. Majborn, “Semiconductor rod in waveguide
—Field distribution for positive and negative conductivity,” JEEE
Trans. Microwave Theory Tech., vol. MTT-16, pp. 194196, 1968.

[6] N. Gotsis, E. E. Vafiadis, and J. N. Sahalos, “The discontinuity
problem of a cylindrical dielectric post in a waveguide and its
application on the dielectric constant measurements of liquids,”
Arch. Elektrotech., vol. 68, pp. 249257, 1985.

[7] J. N. Sahalos and E. Vafiadis, “On the narrow-band microwave
filter design using a dielectric rod,” TEEE Trans. Microwave Theory
Tech., vol. MTT-33, pp. 1165-1171, 1985.

[8] N. Okamoto, J. Nishioka, and Y. Nakanishi, “Scattering by a
ferrimagnetic circular cylinder in a rectangular waveguide,” JEEE
Trans. Microwave Theory Tech., vol. MTT-19, pp. 521-527, 1971.

[9] N. Okamoto and Y. Nakanishi, “Correction to ‘Scattering by a
ferrimagnetic cylinder in a rectangular waveguide,”” IEEE Trans.
Microwave Theory Tech., vol. MTT-20, pp. 782-783, 1972.

[10] P. Bhartia, “Comments on ‘Scattering by a ferrimagnetic cylinder
in a rectangular waveguide,’” IEEE Trans. Microwave Theory
Tech., vol. MTT-22, p. 975, 1974.

[11] T. Yoshida, M. Umeno, and S. Miki, “Propagation characteristics
of a rectangular waveguide containing a cylindrical rod of mag-
netized ferrite,” TEEE Trans. Microwave Theory Tech., vol. MTT-20,
pp- 739-743, 1972.

[12] P. Bhartia, “Dielectric rod loaded waveguides,” Arch. Elek.
Ubertragung., vol. 31, pp. 60-62, 1977.

[13] G. Cicconi and C. Rosatelli, “Solutions of the vector wave equation
for inhomogeneous dielectric cylinders—Scattering in waveguides,”
TEEE Trans. Microwave Theory Tech., vol. MTT-25, pp. 885-892,
1977.

[14] J. C. Araneta, M. E. Brodwin, and G. A. Kriegsmann, “High-tem-
perature characterisation of dielectric rods,” IEEE Trans. Micro-
wave Theory Tech., vol. MTT-32, pp. 1328-1335, 1984.

[15] C. G. Hsu and H. A. Auda, “Multiple dielectric posts in a rectan-
gular waveguide,” IEEE Trans. Microwave Theory Tech., vol.
MTT-34, pp. 883-891, 1986.

[16] Y. Leviatan and G. S. Sheaffer, “Analysis of inductive dielectric
posts in rectangular waveguide,” IEEE Trans. Microwave Theory
Tech., vol. MTT-35, pp. 48-59, 1987.

[17] J. Lauterjung, Abstrahlungs- und Beugungsprobleme in Hohllei-
terstrukturen wmit mit isotropen und magnetisch gyrotropen kreiszy-
lindrischen Streukdrpern, Darmstidter Dissertation D17, Darm-
stadt, 1982.

[18] N. Lochel, Untersuchung eines Rechteckhohlleiters mit auBermittig
angebrachtem, dielektrischen Stift, Diplomarbeit am Fachgebiet
Theoretische Elektrotechnik der Technischen Hochschule Darm-
stadt, Darmstadt, 1984.

(19]

[20]
[21]

(22}
[23]

[24]
[25]

[26]

(30]

R. Gesche, “Resonanzeffekte eines kreiszylindrischen, di-
elektrischen Streukdrpers im Rechteckhohlleiter,” Kleinheubacher
Berichte, vol. 28, pp. 223-228, 1985. .

R. Gesche, Kreiszylindrische Streukorper im Rechteckhohlleiter,
Darmstadter Dissertation D17, Darmstadt, 1986.

G. Piefke, “Das dreidimensionale Zwischenmedium in der Feld-
theorie,” Arch. Elek. Ubertragung., vol. 24, p. 523, 1970.

G. Piefke, Feldtheorie I11, Bibl. Inst., Mannheim, 1977.

F. Reisdorf, Die Zwischenmediums-Methode, Darmstidter Disserta-
tion D17, Darmstadt, 1977.

G. Piefke, Feldtheorie I, Bibl. Inst., Mannheim, 1977.

R. Gesche, “Transformation of the wave equation solution between
parallen displaced cylindrical coordinate systems,” Arch. Elektro-
tech., vol. 67, pp. 391-394, 1984.

L. Lewin, “On the inadequacy of discrete mode-matching tech-
niques in some waveguide discontinuity problems,” IEEE Trans.
Microwave Theory Tech., vol. MTT-18, pp. 364-372, 1970.

L. Lewin, “On the restricted validity of point-matching techniques,”
ITEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 1041-1047,
1970.

F. Reisdorf and H. Knetsch, “Wellenausbreitung im abgeknickten
Rechteckhohlleiter,” Nachrichtentech. Z., pp. 312-317, 1972.

S. Russenschuck, Berechnung der Koppelintegrale zwischen den Ei-
genwellen im Rechteckhohlleiter und den Lisungen der Welleng-
leichung in Zylinderkoordinaten, Studienarbeit am Fachgebeiet The-
oretische Elektrotechnik der Technischen Hochschule Darmstadt,
Darmstadt, 1985.

K. Psbl and G. Wolfram, “Dielektrische Resonatoren, neue Baue-
lemente der Mikrowellentechnik,” Siemens Components, vol. 20, pp.
14-18, 1982.

Roland Gesche (M’87) was born in Berlin,
Germany, on June 18, 1957. He received the
Diplom-Ingenieur and the Doktor-Ingenieur de-
grees from the Technical University of’
Darmstadt, Germany, in 1982 and 1986, From
1981 to 1982 he was employed as a research
assistant at the Technical University of Darms-
tadt. Since 1987 he has been engaged in the
investigation of RF equipment at Leybold AG,
Alzenau.

Norbert Lochel was born in Marburg, Germany,
on August 1, 1958. After receiving the Diplom-
Ingenieur degree from the Technical University
of Darmstadt, he joined the Siemens AG,
Miinchen, where he is engaged in the develop-
ment of microwave systems.




